PRODUCTS OF GROUPS AND GROUP CLASSES

ΒY

BERNHARD AMBERG

Fachbereich Mathematik, Universität Mainz Saarstrasse 21, D-55099 Mainz, Germany

AND

ANDREW FRANSMAN

Department of Mathematics, University of the Western Cape Private Bag X 17, 7535 Belville, South Africa

ABSTRACT

Let \mathcal{X} be a Schunck class, and let the finite group G = AB = BC = AC be the product of two nilpotent subgroups A and B and an \mathcal{X} -subgroup C. If for every common prime divisor p of the orders of A and B the cyclic group of order p is an \mathcal{X} -group, then G is an \mathcal{X} -group. This generalizes earlier results of O. Kegel and F. Peterson. Some related results for groups of the form G = AB = AK = BK, where K is a nilpotent normal subgroup of G and A and B are \mathcal{X} -groups for some saturated formation \mathcal{X} , are also proved.

1. Introduction

A well-known theorem of Kegel [11] and Wielandt [19] states the solubility of every finite group G = AB which is the product of two nilpotent subgroups Aand B; see [4], Theorem 2.4.3. Amberg [1] and Pennington [15] have shown that the Fitting subgroup F of such a product is factorized, i.e. $F = (A \cap F)(B \cap F)$ and $A \cap B \subseteq F$; see [4], Lemma 2.5.7. If there is a third subgroup C such that G = AB = AC = BC, Kegel [12] and Pennington [14] proved that G is nilpotent (supersoluble) whenever C is nilpotent (supersoluble). Moreover, Peterson [16] has shown that if \mathfrak{F} is a saturated formation containing all finite nilpotent groups, then G is an \mathfrak{F} -group whenever C is an \mathfrak{F} -group; see [4], Theorem 2.5.10.

Received February 8, 1993 and in revised form May 3, 1993

Our first theorem extends these results on trifactorized groups to Schunck classes. Recall that a class \mathfrak{X} of finite groups is a **Schunck class** if it contains every group whenever its primitive factor groups are in \mathfrak{X} . Here a finite group is **primitive** if it has a maximal subgroup with trivial core (see [5]).

THEOREM A: Let \mathfrak{X} be a Schunck class of finite groups. Let the finite group G = AB = AC = BC be the product of two nilpotent subgroups A and B and an \mathfrak{X} -subgroup C. If for every common prime divisor p of the orders of A and B the cyclic group of order p is an \mathfrak{X} -group, then G is a (soluble) \mathfrak{X} -group.

As an application of Theorem A we note the following generalization of the theorem of Amberg and Pennington mentioned above.

COROLLARY 1: Let \mathfrak{X} be a Schunck class of finite groups such that the product of two normal \mathfrak{X} -subgroups is an \mathfrak{X} -group. Let the finite group G = AB be the product of two nilpotent subgroups A and B. If for every common prime divisor p of the orders of A and B the cyclic group of order p is an \mathfrak{X} -group, then the maximal normal \mathfrak{X} -subgroup of G is factorized.

Theorem A becomes false if only one of the two subgroups A and B is nilpotent (and the other is an \mathfrak{X} -group), as an example of Peterson shows; see [4], Remark 2.5.12. On the other hand, if \mathfrak{X} is a saturated formation of finite groups, it was shown in [3] and [2] that a finite group G = AB = AK = BK is an \mathfrak{X} -group whenever A and B are \mathfrak{X} -groups and K is a nilpotent normal subgroup of G; see [4], Theorem 6.5.4. The example in section 4 below shows that we cannot expect such a result for arbitrary Schunck classes. Altogether we can say the following.

THEOREM B: Let \mathfrak{X} be a saturated formation of finite groups or a Schunck class of finite soluble groups. Suppose that the finite group G = AB = AK = BK is the product of two \mathfrak{X} -subgroups A and B and a nilpotent normal subgroup K of G. Then in both cases G is an \mathfrak{X} -group.

Our last theorem extends part of Theorem B to general group classes. Let \mathfrak{R} be a class of groups closed under the forming of epimorphic images. A \mathfrak{R} -formation \mathfrak{F} is an epimorphism closed class of \mathfrak{R} -groups which is residual with respect to \mathfrak{R} , i.e. if $G \in \mathfrak{R}$ and N_i is normal in G such that $G/N_i \in \mathfrak{F}$ for every i in the index set I, then $G/\bigcap N_i \in \mathfrak{F}$.

THEOREM C: Let \mathfrak{F} be a \mathfrak{R} -formation which is residual with respect to \mathfrak{R} and satisfies the following condition:

(*) If X is a \Re -group with abelian \mathfrak{F} -residual D, then D has a complement in X and all such complements are conjugate in X.

Assume further that the \Re -group G = AB = AK = BK is the product of two subgroups A and B an a nilpotent normal subgroup K of G. If A and B are \mathfrak{F} -groups, then also G is an \mathfrak{F} -group.

It is well-known that for a saturated formation of finite soluble groups, condition (*) of Theorem C holds; see [5], Theorem 5.18, p. 383. This can be generalized to the class of \mathfrak{U} -groups introduced by Gardiner, Hartley and Tomkinson in [7] and defined by the following conditions:

- (i) Subgroups of U-groups are U-groups,
- (ii) Every \mathfrak{U} -group has a finite (subnormal) series with locally finite-nilpotent factors,
- (iii) If G is a \mathfrak{U} -group and π is a set of primes, then the maximal π -subgroups of G are conjugate.

Clearly, every \mathfrak{U} -group is locally finite-soluble. It is shown in [7] that in the class of \mathfrak{U} -groups saturated formations can be defined and condition (*) of Theorem C can be proved. Therefore the following generalization of a part of Theorem B can be deduced from Theorem C.

COROLLARY 2: Let \mathfrak{F} be a saturated \mathfrak{U} -formation. Let the \mathfrak{U} -group G = AB = AK = BK be the product of three subgroups A, B and K, where K is nilpotent and normal in G. If A and B are \mathfrak{F} -groups, then G is an \mathfrak{F} -group.

Y. Sysak [18] has constructed locally finite-soluble groups of the form G = AB = AK = BK where A and B are isomorphic q-subgroups for a Mersenne prime q and a normal p-subgroup K for the prime p. These groups G are not locally nilpotent, although the three subgroups A, B and K are locally nilpotent. This indicates limitations in generalizing Theorem C and Corollary 2.

Notation: The notation is standard and can for instance be found in [4] and [5]. We note in particular that a group G is an \mathfrak{X} -group if it belongs to the class of groups \mathfrak{X} .

2. Primitive products of finite nilpotent groups

A finite group G satisfies D_{π} for the set of primes π if every π -subgroup of G is contained in some Hall π -subgroup and if any two Hall π -subgroups of G are

conjugate. It is well-known that every finite soluble group satisfies D_{π} for every set of primes π .

LEMMA 1 (Pennington [15]): Let the finite group G = AB satisfying D_{π} be the product of two subgroups A and B. If A and B are both π -closed, then $A_{\pi}B_{\pi} = B_{\pi}A_{\pi}$ is a Hall π -subgroup of G and $[A_{\pi}, B_{\pi}] \subseteq O_{\pi}(G)$. In particular, if $O_{\pi}(G) = 1$, then $[A_{\pi}^{G}, B_{\pi}^{G}] = 1$.

We note the following lemma on primitive factorized finite soluble groups.

LEMMA 2: Let the primitive finite soluble group G = AB be the product of two subgroups A and B, and let M be a uniquely determined minimal normal subgroup of G such that $M = C_G(M) \neq G$. Then the following holds:

- (a) M is an elementary abelian p-group for some prime p and $M = \text{Fit } G = O_P(G)$,
- (b) The Fitting subgroup L/M of G/M is a non-trivial p-group and Z(L) = 1,
- (c) If A and B are p-closed, then A or B is a p-group.

Proof: (a) This is clear; see [5], Chapter A, section 15.

(b) Obviously the Fitting subgroup L/M of G/M is a non-trivial p'-group. Since $Z(L) \subseteq C_G(M) = M$ and L does not centralize M, it follows that Z(L) = 1.

(c) If A is not a p-group, we have $A_{p'} \neq 1$, and the minimal normal subgroup M of G lies in $A_{p'}^G$. Since $O_{p'}(G) = 1$, by Lemma 1 we have

$$[M, B_{p'}] \subseteq [A_{p'}^G, B_{p'}^G] = 1.$$

Hence

$$B_{p'} \subseteq C_G(M) = M = O_p(G).$$

Thus $B_{p'} = 1$, so that B is a p-group. This proves (c).

The following proposition gives some information on primitive finite groups which are factorized by two nilpotent subgroups (see also Gross [8] and Heineken [9]).

PROPOSITION: Let the primitive group G = AB be the product of two nilpotent subgroups A and B and let $M \neq G$ be a uniquely determined minimal normal subgroup of G.

- (i) M is an elementary abelian p-group and $M = C_G(M) = \text{Fit } G = O_p(G)$,
- (ii) $M = (A \cap M)(B \cap M)$ and $A \cap B = 1$,

- (iii) A and B are maximal nilpotent subgroups of G,
- (iv) A or B is a Sylow-p-subgroup of G, the other is a p'-group,
- (v) If G = AC = BC for some subgroup C of G, then G = C.

Proof: (i) The group G is soluble by the theorem of Kegel and Wielandt, so that (i) follows from Lemma 2.

(ii) The Fitting subgroup of G is factorized, so that $M = (A \cap M)(B \cap M)$ and $A \cap B \subseteq M$; see [4], Lemma 2.5.7. In particular $A \cap B$ is a p-group. The Fitting subgroup L/F of G/F is a p'-group and Z(L) = 1 by Lemma 2. The subgroup $A \cap B$ is centralized by M and by a suitable p-complement $G_{p'}$ of G. Therefore $A \cap B$ is contained in Z(L) = 1. This proves (ii).

(iii) Assume that the nilpotent subgroup A is properly contained in a nilpotent subgroup P of G. By the modular law $P = A(B \cap P)$. Clearly G = PB, so that by (ii) it follows that $P \cap B = 1$. Hence A = P. This proves (iii).

(iv) By Lemma 2 one of the two subgroups A or B is a p-group. If A is a p-group, it is even a Sylow-p-subgroup of G by (iii). Since $A \cap B = 1$, it follows that A is a p'-subgroup of G. This proves (iv).

(v) If G = AC = BC and (|A|, |B|) = 1, the order of A and the order of B both divide the order of C. Hence by (iv) |G| = |A||B| = |C| and so G = C.

The preceding proposition is very useful for the study of finite products of nilpotent groups. As an application of this we give a short proof of the following criterion for a finite product of two nilpotent groups to belong to the saturated formation of metanilpotent groups, i.e. to have Fitting length at most two. Note, however, that a finite product of two nilpotent groups may have arbitrary large Fitting length, since for each positive integer k there exists a group of order p^mq^n and Fitting length k where p and q are primes and m and n are natural numbers.

THEOREM (Maier [13]): Let the finite group G = AB be the product of two nilpotent subgroups A and B. Then G is metanilpotent if at least one of the following two conditions is satisfied:

- (i) The p-length $l_p(G) \leq 1$ for every prime p,
- (ii) Any two subgroups of A commute and any two subgroups of B commute.

Proof: Assume that the theorem is false, and let G = AB be a counterexample of minimal order. Since A and B are nilpotent, G is soluble by the theorem of Kegel and Wielandt. Clearly G is not metanilpotent. Since the metanilpotent groups

form a saturated formation, G is a primitive group with uniquely determined minimal normal subgroup $M = C_G(M) = \text{Fit } G = O_p(G) \neq G$ which is an elementary abelian p-group for some prime p.

By the proposition the orders of A and B are relatively prime. If $l_p(G) \leq 1$ it follows that G/M is a p'-group. Therefore M = A and so G = MB is metanilpotent. Therefore we may assume that (ii) holds.

Clearly $A \neq B$. By [11] there exists a proper normal subgroup N of G containing A or B; see [4], Theorem 7.1.6. If $A \subseteq N$, then $N = A(N \cap B) = AB^*$. By induction N is metanilpotent. It is easy to see that M = Fit N. Therefore N/M is nilpotent and hence a p'-group. Hence M is a Sylow-p-subgroup of N and $M = A_p B_{*p}$ is the product of the p-subgroup A_p of A and the p-subgroup B_{*p} of B^* .

By the proposition one of the two subgroups A or B is a p-group, the other a p'-group. In particular $A \cap B = 1$. Then $M = A_p = A$ or $M = B*_p$. In the first case G is metanilpotent, so that we may assume that $M = B*_p$.

Then $M = B*_p = B*$ is a maximal normal subgroup of B. Since the Frattini subgroup of G is trivial, there exists a complement U of M in G. Then $Q = B \cap U$ is a complement of M in B. By [13], Lemma 3, B is abelian, contradicting $M = C_G(M)$. The theorem is proved.

3. Proof of Theorem A and Corollary 1

Proof of Theorem A: Assume that the theorem is false, and let G be a counterexample of minimal order. Then G is not an \mathfrak{X} -group, but every proper epimorphic image of G is an \mathfrak{X} -group. This implies that G is primitive. If G is nilpotent, it is therefore cyclic of prime order p. If A = B = G, then G is an \mathfrak{X} -group by hypothesis. If A or B is trivial and the other is the whole group G, then G = Cis an \mathfrak{X} -group. Also in the remaining case when G is not nilpotent, G = C is an \mathfrak{X} -group by the proposition. This proves Theorem A.

Proof of Corollary 1: The product F of all normal \mathfrak{X} -subgroups of the finite group G is a normal \mathfrak{X} -subgroup of G. The factorizer of F in G is

$$X(F) = F(A \cap BF) = F(B \cap AF) = (A \cap BF)(B \cap AF).$$

Hence X = X(F) is an \mathfrak{X} -group by Theorem A. Since A and B are nilpotent, the subgroup X/F is subnormal in G/F, so that X is subnormal in G; see [4], Corollary 6.3.11. Therefore X is contained in F and F = X(F) is factorized.

4. Proof of Theorem B and the example

Proof of Theorem B: Assume that theorem is false, and let G = AB = AK = BK be a counterexample of minimal order. Then G is not an \mathfrak{X} -group, but every proper epimorphic image of G is an \mathfrak{X} -group. This implies that G is a primitive group. In particular Frat G = 1. Since $K \neq 1$ is nilpotent, it follows that G has exactly one minimal normal subgroup M, which is an elementary abelian p-group for some prime p. Thus

$$M = C_G(M) = K.$$

Evidently A and B are maximal subgroups of G. Moreover, since K is contained in every non-trivial normal subgroup of G, the images of A and B are \mathfrak{X} -maximal in every epimorphic image of G. Thus A and B are \mathfrak{X} -projectors of G, so that in both cases they are conjugate. In the case of a saturated formation \mathfrak{X} this follows from a result of Schmid [17]; in the case of a Schunck class \mathfrak{X} of finite soluble groups it follows from [5], Theorem 3.21, p. 299. Finally this implies that G = A = B is an \mathfrak{X} -group. This contradiction proves Theorem B.

Example: Let V(3, 2) be a 3-dimensional vector space over GF(2) and let G be a semidirect product of V(3, 2) with GL(3, 2), the general linear group of 3×3 matrices over GF(2), under the natural action of GL(3, 2) on V(3, 2). The group GL(3, 2) is simple of order 168. Then G = KA where the normal subgroup K of G is elementary abelian of order 8 and A is isomorphic with GL(3, 2). Let \mathfrak{X} be the smallest Schunck class containing the simple group GL(3, 2). It follows that

$$\mathfrak{X} = \{X; X/ \text{Frat}X \text{ is isomorphic to } GL(3,2) \text{ or } 1\},\$$

see Erickson [6], p. 1921. Since A is isomorphic to GL(3, 2) it is a (maximal) \mathfrak{X} subgroup of G and K is an abelian minimal normal subgroup of G. Furthermore, the first cohomology group $H^1(A, K)$ consists of exactly 2 elements, and hence there is a non-trivial 1-cocycle f as described in Holt and Plesken [10], p. 172, which maps A surjectively onto K. The set $B = \{af(a): a \in A\}$ is easily seen to be a complement of K in G. Thus B is a (maximal) \mathfrak{X} -subgroup of G which is isomorphic to A. Finally we see that G = AB by the surjectivity of f as follows.

First observe that $\{af(u); a, u \in A\}$ consists of precisely 168×8 elements, since $K \cap A = 1$ and as the set $\{f(a): a \in A\}$ has exactly 8 elements. Now for each a

Isr. J. Math.

in A, it follows that $f(a) = a^{-1}(af(a)) \in AB$. Therefore G = AB = AK = BK, since the order of G is 168×8 . Clearly A and B are \mathfrak{X} -groups, but G is not an \mathfrak{X} -group.

5. Proof of Theorem C

Assume that Theorem C is false and consider a counterexample G = AB = AK = BK where the nilpotent class c of K is minimal. Assume first that c = 1, so that K is abelian.

Since $G/K = AK/K \simeq A/(A \cap K)$ is an \mathfrak{F} -group, the \mathfrak{F} -residual D of G is contained in K. Therefore also D is abelian. By condition (*) D has a complement Y in G, so that $K = D \times (Y \cap K)$. The subgroup $T = Y \cap K$ is normal in AY = G. Since G/D is an \mathfrak{F} -group and G is not an \mathfrak{F} -group, it follows that G/T is not an \mathfrak{F} -group.

Assume first that K = D. Since K is abelian, $A \cap K$ and $B \cap K$ are normal subgroups of AK = BK = G, so that also $C = (A \cap K)(B \cap K)$ is normal in G. The \Re -group G/C has the triple factorization

$$G/C = (AC/C)(BC/C) = (AC/C)(K/C) = (BC/C)(K/C)$$

with \mathfrak{F} -subgroups $AC/C \simeq A/(A \cap C)$ and $BC/C \simeq B/(B \cap C)$ and an abelian normal subgroup K/C. Then

$$(AC/C) \cap (K/C) = 1 = (BC/C) \cap (K/C).$$

By (*) the complements AC/C and BC/C are conjugate, so that G/C is an \mathfrak{F} -group. Hence D is contained in C. This implies that $K = (A \cap K)(B \cap K)$. Therefore $G/(A \cap K) \simeq B/(B \cap A \cap K)$ is an \mathfrak{F} -group. Hence $K = D \subseteq A \cap K \subseteq A$, and so G = A is an \mathfrak{F} -group. This contradiction shows that D must be properly contained in K.

Consider next the triply factorized R-group

$$G/T = (AT/T)(BT/T) = (AT/T)(K/T) = (BT/T)(K/T).$$

We claim that the \mathfrak{F} -residual S/T of G/T is equal to K/T. Since $(G/T)(K/T) \simeq G/K$ is an \mathfrak{F} -group, it follows that S/T is contained in K/T, so that S lies in K. On the other hand, $G/S \simeq (G/T)/(S/T)$ is an \mathfrak{F} -group. Hence D is contained in S. In fact, since T lies obviously in S, it is clear that $K = D \times T \subseteq S$. Therefore K = S, which proves the claim. Thus we obtain that G/T is an \mathfrak{F} -group, a contradiction. Therefore K is not abelian.

Suppose now that c > 1. By the minimality of c we have that G/Z(K) is an \mathfrak{F} -group. Hence the \mathfrak{F} -residual D is contained in Z(K), so that D is abelian. By (*) D has a complement Y in G. Since D lies in Z(K), the subgroup $Y \cap K$ is normal in DY = G. Thus $K = D \times (Y \cap K)$, and this implies that $K/(Y \cap K)$ is abelian. It follows from the abelian case that $G/(Y \cap K)$ is an \mathfrak{F} -group. However, since G/D is an \mathfrak{F} -group, also $G \simeq G/(Y \cap K \cap D)$ is an \mathfrak{F} -group. This proves Theorem C.

References

- B. Amberg, Factorizations of groups, Habilitationsschrift, Universität Mainz, Mai 1973.
- [2] B. Amberg, Triply factorized groups (Groups St. Andrews 1989), Vol. 1, London Math. Soc. Lecture Note Series 159, Cambridge Univ. Press, 1991, pp. 1–13.
- [3] B. Amberg, S. Franciosi and F. de Giovanni, Groups with a supersoluble triple factorization, J. Algebra 117 (1988), 136-148.
- [4] B. Amberg, S. Franciosi and F. de Giovanni, Products of Groups, Oxford University Press, 1992.
- [5] K. Doerk and T. Hawkes, Finite Soluble Groups, De Gruyter, Berlin, 1992.
- [6] R. P. Erickson, Projectors of finite groups, Comm. Algebra 10 (1982), 1919–1938.
- [7] A. D. Gardiner, B. Hartley and M. Tomkinson, Saturated formations and Sylow structure of locally finite groups, J. Algebra 17 (1971), 171-211.
- [8] F. Gross, Finite groups which are the product of two nilpotent subgroups, Bull. Austral. Math. Soc. 9 (1973), 267-274.
- [9] H. Heineken, Products of finite nilpotent groups, Math. Ann. 287 (1990), 643-652.
- [10] D. F. Holt and W. Plesken, Perfect Groups, Clarendon Press, Oxford, 1989.
- [11] O. H. Kegel, Produkte nilpotenter Gruppen, Arch. Math. 12 (1961), 90-93.
- [12] O. H. Kegel, Zur Struktur mehrfach faktorisierter endlicher Gruppen, Math. Z. 87 (1965), 42–48.
- [13] R. Maier, Endliche metanilpotente Gruppen, Arch. Math. 23 (1972), 139-144.
- [14] E. Pennington, Trifactorisable groups, Bull. Austral. Math. Soc. 8 (1973), 461-469.
- [15] E. Pennington, On products of finite nilpotent groups, Math. Z. 134 (1973), 81–83.

- [16] F. G. Peterson, Properties of multifactorizable groups, preprint, (1973), unpublished.
- [17] P. Schmid, Lokale Formationen endlicher Gruppen, Math. Z. 137 (1974), 31-48.
- [18] Y. Sysak, Products of infinite groups, Preprint 82.53, Akad. Nauk Ukrain. Inst. Mat., Kiev (1982).
- [19] H. Wielandt, Über Produkte von nilpotenten Gruppen, Illinois J. Math. 2 (1958), 611-618.