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ABSTRACT

Let X be a Schunck class, and let the finite group G = AB = BC = AC be
the product of two nilpotent subgroups A and B and an X-subgroup C. If
for every common prime divisor p of the orders of A and B the cyclic group
of order p is an X-group, then G is an X-group. This generalizes earlier
results of O. Kegel and F. Peterson. Some related results for groups of the
form G = AB = AK = BK, where K is a nilpotent normal subgroup of
G and A and B are X-groups for some saturated formation X, are also
proved.

1. Introduction

A well-known theorem of Kegel [11] and Wielandt [19] states the solubility of
every finite group G = AB which is the product of two nilpotent subgroups A
and B; see [4], Theorem 2.4.3. Amberg (1] and Pennington [{15] have shown that
the Fitting subgroup F of such a product is factorized, i.e. F =(ANF)(BNF)
and AN B C F; see [4], Lemma 2.5.7. If there is a third subgroup C such that
G = AB = AC = BC, Kegel [12] and Pennington [14] proved that G is nilpotent
(supersoluble) whenever C is nilpotent (supersoluble). Moreover, Peterson [16]
has shown that if § is a saturated formation containing all finite nilpotent groups,

then G is an F-group whenever C is an §-group; see [4], Theorem 2.5.10.
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Our first theorem extends these results on trifactorized groups to Schunck
classes. Recall that a class X of finite groups is a Schunck class if it contains
every group whenever its primitive factor groups are in X. Here a finite group is
primitive if it has a maximal subgroup with trivial core (see [5]).

THEOREM A: Let X be a Schunck class of finite groups. Let the finite group
G = AB = AC = BC be the product of two nilpotent subgroups A and B and
an X-subgroup C. If for every common prime divisor p of the orders of A and B
the cyclic group of order p is an X-group, then G is a (soluble) X-group.

As an application of Theorem A we note the following generalization of the
theorem of Amberg and Pennington mentioned above.

COROLLARY 1: Let X be a Schunck class of finite groups such that the product
of two normal X-subgroups is an X-group. Let the finite group G = AB be the
product of two nilpotent subgroups A and B. If for every common prime divisor
p of the orders of A and B the cyclic group of order p is an X-group, then the
maximal normal X-subgroup of G is factorized.

Theorem A becomes false if only one of the two subgroups A and B is nilpotent
(and the other is an X-group), as an example of Peterson shows; see 4], Remark
2.5.12. On the other hand, if X is a saturated formation of finite groups, it was
shown in [3] and [2] that a finite group G = AB = AK = BK is an X-group
whenever A and B are X-groups and K is a nilpotent normal subgroup of G; see
[4], Theorem 6.5.4. The example in section 4 below shows that we cannot expect
such a result for arbitrary Schunck classes. Altogether we can say the following.

THEOREM B: Let X be a saturated formation of finite groups or a Schunck class
of finite soluble groups. Suppose that the finite group G = AB = AK = BK is
the product of two X-subgroups A and B and a nilpotent normal subgroup K of
G. Then in both cases G is an X-group.

Our last theorem extends part of Theorem B to general group classes. Let
R be a class of groups closed under the forming of epimorphic images. A R-
formation § is an epimorphism closed class of R-groups which is residual with
respect to R, i.e. if G € R and N; is normal in G such that G/N; € § for every
i in the index set I, then G/ N; € §.

THEOREM C: Let § be a R-formation which is residual with respect to R and
satisfies the following condition:
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(*) If X is a R-group with abelian §-residual D, then D has a complement in
X and all such complements are conjugate in X.
Assume further that the R-group G = AB = AK = BK is the product of two
subgroups A and B an a nilpotent normal subgroup K of G. If A and B are
§-groups, then also G is an §-group.

It is well-known that for a saturated formation of finite soluble groups, condi-
tion (*) of Theorem C holds; see [5], Theorem 5.18, p. 383. This can be gener-
alized to the class of {l-groups introduced by Gardiner, Hartley and Tomkinson
in [7] and defined by the following conditions:

(i) Subgroups of U-groups are {-groups,

(i) Every Y-group has a finite (subnormal) series with locally finite-nilpotent

factors,
(iii) If G is a Y-group and 7 is a set of primes, then the maximal 7-subgroups
of G are conjugate.

Clearly, every ii-group is locally finite-soluble. It is shown in [7] that in the class
of Y4-groups saturated formations can be defined and condition (*) of Theorem
C can be proved. Therefore the following generalization of a part of Theorem B
can be deduced from Theorem C.

COROLLARY 2: Let § be a saturated i-formation. Let the U-group G = AB =
AK = BK be the product of three subgroups A, B and K, where K is nilpotent
and normal in G. If A and B are §-groups, then G is an §-group.

Y. Sysak [18] has constructed locally finite-soluble groups of the form G =
AB = AK = BK where A and B are isomorphic g-subgroups for a Mersenne
prime q and a normal p-subgroup K for the prime p. These groups G are not
locally nilpotent, although the three subgroups A, B and K are locally nilpotent.
This indicates limitations in generalizing Theorem C and Corollary 2.

Notation: The notation is standard and can for instance be found in [4] and [5].
We note in particular that a group G is an X-group if it belongs to the class of
groups X.

2. Primitive products of finite nilpotent groups

A finite group G satisfies D, for the set of primes 7 if every 7-subgroup of G
is contained in some Hall n-subgroup and if any two Hall w-subgroups of G are
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conjugate. It is well-known that every finite soluble group satisfies D, for every
set of primes 7.

LEMMA 1 (Pennington [15]): Let the finite group G = AB satisfying D, be
the product of two subgroups A and B. If A and B are both m-closed, then
ArB; = B A, is a Hall m-subgroup of G and [Ar, Bz] C O,(G). In particular,
if O-(G) = 1, then [A¢,Bf] = 1.

We note the following lemma on primitive factorized finite soluble groups.

LEMMA 2: Let the primitive finite soluble group G = AB be the product of
two subgroups A and B, and let M be a uniquely determined minimal normal
subgroup of G such that M = Cg(M) # G. Then the following holds:
(a) M is an elementary abelian p-group for some prime p and M = FitG =
Op(G),
(b) The Fitting subgroup L/M of G/M is a non-trivial p-group and Z(L) =1,
(¢) If A and B are p-closed, then A or B is a p-group.

Proof: (a) This is clear; see [5], Chapter A, section 15.
(b) Obviously the Fitting subgroup L/M of G/M is a non-trivial p’-group.
Since Z(L) € Cg(M) = M and L does not centralize M, it follows that Z(L) = 1.
(c) If A is not a p-group, we have A, # 1, and the minimal normal subgroup
M of G lies in AS. Since Op(G) = 1, by Lemma 1 we have

[M, By} € [AS, BS] = 1.

Hence
By CCa(M) =M = 0,(G).

Thus B,» = 1, so that B is a p-group. This proves (c). ]
14

The following proposition gives some information on primitive finite groups
which are factorized by two nilpotent subgroups (see also Gross [8] and Heineken

(90)-

PROPOSITION: Let the primitive group G = AB be the product of two nilpotent
subgroups A and B and let M # G be a uniquely determined minimal normal
subgroup of G.
(i) M is an elementary abelian p-group and M = Ca(M) = Fit G = 0,(G),
(i) M=(AnM)BnM)and ANB =1,
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(iii) A and B are maximal nilpotent subgroups of G,
(iv) A or B is a Sylow-p-subgroup of G, the other is a p’-group,
(v) If G = AC = BC for some subgroup C of G, then G = C.

Proof: (i) The group G is soluble by the theorem of Kegel and Wielandt, so
that (i) follows from Lemma 2.

(ii) The Fitting subgroup of G is factorized, so that M = (ANM)(BN M) and
AN B C M; see [4], Lemma 2.5.7. In particular AN B is a p-group. The Fitting
subgroup L/F of G/F is a p’-group and Z(L) = 1 by Lemma 2. The subgroup
AN B is centralized by M and by a suitable p-complement G,/ of G. Therefore
AN B is contained in Z(L) = 1. This proves (ii).

(iii) Assume that the nilpotent subgroup A is properly contained in a nilpotent
subgroup P of G. By the modular law P = A(B N P). Clearly G = PB, so that
by (ii) it follows that PN B = 1. Hence A = P. This proves (iii).

(iv) By Lemma 2 one of the two subgroups A or B is a p-group. If A is a
p-group, it is even a Sylow-p-subgroup of G by (iii). Since AN B = 1, it follows
that A is a p’-subgroup of G. This proves (iv).

(v) If G = AC = BC and (|A|,|B|) = 1, the order of A and the order of B
both divide the order of C. Hence by (iv) |G| = |A||B| = |C| and so G = C.
1

The preceding proposition is very useful for the study of finite products of
nilpotent groups. As an application of this we give a short proof of the following
criterion for a finite product of two nilpotent groups to belong to the saturated
formation of metanilpotent groups, i.e. to have Fitting length at most two. Note,
however, that a finite product of two nilpotent groups may have arbitrary large
Fitting length, since for each positive integer k there exists a group of order p™q™
and Fitting length k where p and q are primes and m and n are natural numbers.

THEOREM (Maier (13]): Let the finite group G = AB be the product of two
nilpotent subgroups A and B. Then G is metanilpotent if at least one of the
following two conditions is satisfied:

(i) The p-length l,(G) <1 for every prime p,

{(ii) Any two subgroups of A commute and any two subgroups of B commute.

Proof: Assume that the theorem is false, and let G = AB be a counterexample of
minimal order. Since A and B are nilpotent, G is soluble by the theorem of Kegel
and Wielandt. Clearly G is not metanilpotent. Since the metanilpotent groups
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form a saturated formation, G is a primitive group with uniquely determined
minimal normal subgroup M = Cg(M) = FitG = O,(G) # G which is an
elementary abelian p-group for some prime p.

By the proposition the orders of A and B are relatively prime. If [,(G) <
1 it follows that G/M is a p’-group. Therefore M = A and so G = MB is
metanilpotent. Therefore we may assume that (ii) holds.

Clearly A # B. By [11] there exists a proper normal subgroup N of G con-
taining A or B; see [4], Theorem 7.1.6. If A C N, then N = A(N N B) = ABx.
By induction N is metanilpotent. It is easy to see that M = Fit N. Therefore
N/M is nilpotent and hence a p’-group. Hence M is a Sylow-p-subgroup of N
and M = A,Bx, is the product of the p-subgroup A, of A and the p-subgroup
Bxp of Bx.

By the proposition one of the two subgroups A or B is a p-group, the other a
p'-group. In particular AN B =1. Then M = A, = A or M = Bx,. In the first
case G is metanilpotent, so that we may assume that M = Bx,,.

Then M = B%, = Bx is a maximal normal subgroup of B. Since the Frattini
subgroup of G is trivial, there exists a complement U of M in G. Then @ = BNU
is a complement of M in B. By [13], Lemma 3, B is abelian, contradicting
M = Cg(M). The theorem is proved. ]

3. Proof of Theorem A and Corollary 1

Proof of Theorem A: Assume that the theorem is false, and let G be a counter-
example of minimal order. Then G is not an X-group, but every proper epimor-
phic image of G is an X-group. This implies that G is primitive. If G is nilpotent,
it is therefore cyclic of prime order p. If A = B = G, then G is an X-group by
hypothesis. If A or B is trivial and the other is the whole group G, then G = C
is an X-group. Also in the remaining case when G is not nilpotent, G = C is an
X-group by the proposition. This proves Theorem A.

Proof of Corollary 1: The product F' of all normal X-subgroups of the finite
group G is a normal X-subgroup of G. The factorizer of F' in G is

X(F)=F(ANBF)=F(BnAF)=(ANBF)(BN AF).
Hence X = X(F) is an X-group by Theorem A. Since A and B are nilpotent,

the subgroup X/F is subnormal in G/F, so that X is subnormal in G; see [4],
Corollary 6.3.11. Therefore X is contained in F and F = X (F) is factorized.
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4. Proof of Theorem B and the example

Proof of Theorem B: Assume that theorem is false, and let G = AB = AK =
BK be a counterexample of minimal order. Then G is not an X-group, but every
proper epimorphic image of G is an X-group. This implies that G is a primitive
group. In particular Frat G = 1. Since K # 1 is nilpotent, it follows that G
has exactly one minimal normal subgroup M, which is an elementary abelian
p-group for some prime p. Thus

M=Cg(M)=K.

Evidently A and B are maximal subgroups of G. Moreover, since K is contained
in every non-trivial normal subgroup of G, the images of A and B are X-maximal
in every epimorphic image of G. Thus A and B are X-projectors of G, so that
in both cases they are conjugate. In the case of a saturated formation X this
follows from a result of Schmid [17]; in the case of a Schunck class X of finite
soluble groups it follows from [5], Theorem 3.21, p. 299. Finally this implies that
G = A = B is an X-group. This contradiction proves Theorem B.

Example: Let V(3,2) be a 3-dimensional vector space over GF(2) and let G be
a semidirect product of V(3,2) with GL(3,2), the general linear group of 3 x 3
matrices over GF(2), under the natural action of GL(3,2) on V(3,2). The group
GL(3,2) is simple of order 168. Then G = K A where the normal subgroup K of
G is elementary abelian of order 8 and A is isomorphic with GL(3,2). Let X be
the smallest Schunck class containing the simple group GL(3,2). It follows that

X = {X; X/FratX is isomorphic to GL(3,2) or 1},

see Erickson [6], p. 1921. Since A is isomorphic to GL(3,2) it is a (maximal) X-
subgroup of G and K is an abelian minimal normal subgroup of G. Furthermore,
the first cohomology group H!(A, K) consists of exactly 2 elements, and hence
there is a non-trivial 1-cocycle f as described in Holt and Plesken [10], p. 172,
which maps A surjectively onto K. The set B = {af(a): a € A} is easily seen to
be a complement of K in G. Thus B is a (maximal) X-subgroup of G which is
isomorphic to A. Finally we see that G = AB by the surjectivity of f as follows.

First observe that {af(u); a,u € A} consists of precisely 168 x 8 elements, since
K NA=1 and as the set {f(a): a € A} has exactly 8 elements. Now for each a
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in A, it follows that f(a) = a~}(af(a)) € AB. Therefore G = AB = AK = BK,
since the order of G is 168 x 8. Clearly A and B are X-groups, but G is not an
X-group.

5. Proof of Theorem C

Assume that Theorem C is false and consider a counterexample G = AB =
AK = BK where the nilpotent class ¢ of K is minimal. Assume first that ¢ = 1,
so that K is abelian.

Since G/K = AK/K ~ A/(AN K) is an §-group, the F-residual D of G is
contained in K. Therefore also D is abelian. By condition (*) D has a comple-
ment Y in G, so that K = D x (Y N K). The subgroup T = Y N K is normal in
AY = G. Since G/D is an F-group and G is not an §-group, it follows that G/T
is not an F-group.

Assume first that K = D. Since K is abelian, AN K and B N K are normal
subgroups of AK = BK = G, so that also C = (AN K)(BN K) is normal in G.
The R-group G/C has the triple factorization

G/C = (AC/C)(BC/C) = (AC/C)(K/C) = (BC/C)(K/C)

with F-subgroups AC/C ~ A/(ANC) and BC/C ~ B/(BN C) and an abelian
normal subgroup K/C. Then

(AC/C)N (K/C) = 1= (BC/C)N (K/C).

By (%) the complements AC/C and BC/C are conjugate, so that G/C is an
F-group. Hence D is contained in C. This implies that K = (AN K)(B N K).
Therefore G/(ANK) ~ B/(BNANK) is an §-group. Hence K = D C ANK C A,
and so G = A is an §-group. This contradiction shows that D must be properly
contained in K.

Consider next the triply factorized R-group

G/T = (AT/T)(BT/T) = (AT/T)(K/T) = (BT/T)(K/T).

We claim that the F-residual S/T of G/T is equal to K/T. Since (G/T)(K/T) ~
G/K is an §-group, it follows that S/T is contained in K/T, so that § lies in K.
On the other hand, G/S ~ (G/T)/(S/T) is an F-group. Hence D is contained in
S. In fact, since T lies obviously in S, it is clear that K = D x T C S. Therefore
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K = S, which proves the claim. Thus we obtain that G/T is an §-group, a
contradiction. Therefore K is not abelian.

Suppose now that ¢ > 1. By the minimality of ¢ we have that G/Z(K) is an
F-group. Hence the F-residual D is contained in Z(K), so that D is abelian. By
(x) D has a complement Y in G. Since D lies in Z(K), the subgroup Y N K is
normal in DY = G. Thus K = D x (Y N K), and this implies that K/(Y N K) is
abelian. It follows from the abelian case that G/(Y N K) is an §-group. However,
since G/D is an §-group, also G ~ G/(Y N K N D) is an §-group. This proves
Theorem C.

References

[1] B. Amberg, Factorizations of groups, Habilitationsschrift, Universitit Mainz, Mai
1973.

(2] B. Amberg, Triply factorized groups (Groups St. Andrews 1989), Vol. 1, London
Math. Soc. Lecture Note Series 159, Cambridge Univ. Press, 1991, pp. 1-13.

[3] B. Amberg, S. Franciosi and F. de Giovanni, Groups with a supersoluble triple
factorization, J. Algebra 117 (1988), 136-148.

[4] B. Amberg, S. Franciosi and F. de Giovanni, Products of Groups, Oxford University
Press, 1992.

[5] K. Doerk and T. Hawkes, Finite Soluble Groups, De Gruyter, Berlin, 1992.
[6] R. P. Erickson, Projectors of finite groups, Comm. Algebra 10 (1982), 1919-1938.

[7] A.D. Gardiner, B. Hartley and M. Tomkinson, Saturated formations and Sylow
structure of locally finite groups, J. Algebra 17 (1971), 171-211.

[8] F. Gross, Finite groups which are the product of two nilpotent subgroups, Bull.
Austral. Math. Soc. 9 (1973), 267-274.

[9] H. Heineken, Products of finite nilpotent groups, Math. Ann. 287 (1990), 643-652.
[10] D. F. Holt and W. Plesken, Perfect Groups, Clarendon Press, Oxford, 1989.
{11} O. H. Kegel, Produkte nilpotenter Gruppen, Arch. Math. 12 (1961), 90-93.

[12] O. H. Kegel, Zur Struktur mehrfach faktorisierter endlicher Gruppen, Math. Z. 87
(1965), 42-48.

[13] R. Maier, Endliche metanilpotente Gruppen, Arch. Math. 23 (1972), 139-144.
[14] E. Pennington, Trifactorisable groups, Bull. Austral. Math. Soc. 8 (1973), 461-469.
[15] E. Pennington, On products of finite nilpotent groups, Math. Z. 134 (1973), 81-83.



18 B. AMBERG AND A. FRANSMAN Isr. J. Math.

[16] F. G. Peterson, Properties of multifactorizable groups, preprint, (1973), unpub-
lished.

[17] P. Schmid, Lokale Formationen endlicher Gruppen, Math. Z. 137 (1974), 31-48.

[18] Y. Sysak, Products of infinite groups, Preprint 82.53, Akad. Nauk Ukrain. Inst.
Mat., Kiev (1982).

[19] H. Wielandt, Uber Produkte von nilpotenten Gruppen, Illinois J. Math. 2 (1958),
611-618.



