PRODUCTS OF GROUPS AND GROUP CLASSES

BY

BERNHARD AMBERG

Faehbereich Mathematik, Universitiit Mainz Saarstrasse 21, D-55099 Mainz, Germany

AND

ANDREW FRANSMAN

Department of Mathematics, University of the Western Cape Private Bag X 17, 7535 Belville, South Africa

ABSTRACT

Let X be a Schunck class, and let the finite group $G = AB = BC = AC$ be the product of two nilpotent subgroups A and B and an X -subgroup C. If for every common prime divisor p of the orders of A and B the cyclic group of order p is an \mathcal{X} -group, then G is an \mathcal{X} -group. This generalizes earlier results of O. Kegel and F. Peterson. Some related results for groups of the form $G = AB = AK = BK$, where K is a nilpotent normal subgroup of G and A and B are X-groups for some saturated formation \mathcal{X} , are also proved.

1. Introduction

A well-known theorem of Kegel [11] and Wielandt [19] states the solubility of every finite group $G = AB$ which is the product of two nilpotent subgroups A and B ; see [4], Theorem 2.4.3. Amberg [1] and Pennington [15] have shown that the Fitting subgroup F of such a product is factorized, i.e. $F = (A \cap F)(B \cap F)$ and $A \cap B \subseteq F$; see [4], Lemma 2.5.7. If there is a third subgroup C such that $G = AB = AC = BC$, Kegel [12] and Pennington [14] proved that G is nilpotent (supersoluble) whenever C is nilpotent (supersoluble). Moreover, Peterson [16] has shown that if \mathfrak{F} is a saturated formation containing all finite nilpotent groups, then G is an $\mathfrak F$ -group whenever C is an $\mathfrak F$ -group; see [4], Theorem 2.5.10.

Received February 8, 1993 and in revised form May 3, 1993

Our first theorem extends these results on trifactorized groups to Schunck classes. Recall that a class $\mathfrak X$ of finite groups is a **Schunck class** if it contains every group whenever its primitive factor groups are in \mathfrak{X} . Here a finite group is primitive if it has a maximal subgroup with trivial core (see [5]).

THEOREM A: *Let X be a Schunck class of finite groups. Let* the *finite group* $G = AB = AC = BC$ be the product of two nilpotent subgroups A and B and *an X-subgroup C. If for every common prime divisor p of the orders of A and B* the *cyclic group of order p is an X-group, then G is a (soluble) X-group.*

As an application of Theorem A we note the following generalization of the theorem of Amberg and Pennington mentioned above.

COROLLARY 1: *Let X be a Schunck class of finite groups such that the product of two normal X-subgroups is an X-group. Let the finite group* $G = AB$ *be the product of two nilpotent subgroups A and B. If for* every *common prime divisor p of the orders of A and B the cyclic group of order p is an X-group, then* the *maximal normal X-subgroup of G is factorized.*

Theorem A becomes false if only one of the two subgroups A and B is nilpotent (and the other is an $\mathfrak{X}\text{-group}$), as an example of Peterson shows; see [4], Remark 2.5.12. On the other hand, if $\mathfrak X$ is a saturated formation of finite groups, it was shown in [3] and [2] that a finite group $G = AB = AK = BK$ is an X-group whenever A and B are \mathfrak{X} -groups and K is a nilpotent normal subgroup of G; see [4], Theorem 6.5.4. The example in section 4 below shows that we cannot expect such a result for arbitrary Schunck classes. Altogether we can say the following.

THEOREM B: *Let X be a saturated formation of finite groups or a Schunck class of finite soluble groups. Suppose that the finite group* $G = AB = AK = BK$ *is* the *product of two X-subgroups A and B and a nilpotent normal subgroup K of G. Then in both cases G is an X-group.*

Our last theorem extends part of Theorem B to general group classes. Let \Re be a class of groups closed under the forming of epimorphic images. A \Re formation $\mathfrak F$ is an epimorphism closed class of $\mathfrak R$ -groups which is residual with respect to \mathfrak{R} , i.e. if $G \in \mathfrak{R}$ and N_i is normal in G such that $G/N_i \in \mathfrak{F}$ for every i in the index set I, then $G/\bigcap N_i \in \mathfrak{F}$.

THEOREM C: Let $\mathfrak F$ be a $\mathfrak R$ -formation which is residual with respect to $\mathfrak R$ and *satisfies the following condition:*

 $(*)$ If X is a \Re -group with abelian \Im -residual *D*, then *D* has a complement in X and *all* such *complements* are *conjugate* in X.

Assume further that the \Re -group $G = AB = AK = BK$ is the product of two *subgroups A and B* an a *nilpotent* normal *subgroup K of G. If A* and B are $\mathfrak F$ -groups, then also G is an $\mathfrak F$ -group.

It is well-known that for a saturated formation of finite soluble groups, condition (*) of Theorem C holds; see [5], Theorem 5.18, p. 383. This can be generalized to the class of H-groups introduced by Gardiner, Hartley and Tomkinson in [7] and defined by the following conditions:

- (i) Subgroups of $\mathfrak U$ -groups are $\mathfrak U$ -groups,
- (ii) Every H-group has a finite (subnormal) series with locally finite-nilpotent factors,
- (iii) If G is a \mathfrak{U} -group and π is a set of primes, then the maximal π -subgroups of G are conjugate.

Clearly, every H-group is locally finite-soluble. It is shown in [7] that in the class of $\mathfrak U$ -groups saturated formations can be defined and condition $(*)$ of Theorem C can be proved. Therefore the following generalization of a part of Theorem B can be deduced from Theorem C.

COROLLARY 2: Let $\mathfrak F$ be a saturated $\mathfrak U$ -formation. Let the $\mathfrak U$ -group $G = AB =$ $AK = BK$ be the product of three *subgroups A, B and K, where K is nilpotent* and normal in G . If A and B are $\mathfrak F$ -groups, then G is an $\mathfrak F$ -group.

Y. Sysak [18] has constructed locally finite-soluble groups of the form $G =$ $AB = AK = BK$ where A and B are isomorphic q-subgroups for a Mersenne prime q and a normal p-subgroup K for the prime p. These groups G are not locally nilpotent, although the three subgroups A, B and K are locally nilpotent. This indicates limitations in generalizing Theorem C and Corollary 2.

Notation: The notation is standard and can for instance be found in [4] and [5]. We note in particular that a group G is an $\mathfrak{X}\text{-}\mathbf{group}$ if it belongs to the class of groups \mathfrak{X} .

2. Primitive products of finite nilpotent groups

A finite group G satisfies D_{π} for the set of primes π if every π -subgroup of G is contained in some Hall π -subgroup and if any two Hall π -subgroups of G are conjugate. It is well-known that every finite soluble group satisfies D_{π} for every set of primes π .

LEMMA 1 (Pennington [15]): Let the finite group $G = AB$ satisfying D_{π} be the product of two subgroups A and B . If A and B are both π -closed, then $A_{\pi}B_{\pi} = B_{\pi}A_{\pi}$ is a Hall π -subgroup of G and $[A_{\pi}, B_{\pi}] \subseteq O_{\pi}(G)$. In particular, *if* $O_{\pi}(G) = 1$, then $[A_{\pi}^{G}, B_{\pi}^{G}] = 1$.

We note the following lemma on primitive factorized finite soluble groups.

LEMMA 2: Let the primitive finite soluble group $G = AB$ be the product of *two subgroups A and B, and let M be a uniquely determined minimal normal* subgroup of G such that $M = C_G(M) \neq G$. Then the following holds:

- (a) *M* is an elementary abelian *p*-group for some prime p and $M = Fit G =$ $O_P(G)$,
- (b) The Fitting subgroup L/M of G/M is a non-trivial p-group and $Z(L) = 1$,
- (c) If A and B are *p-closed,* then A or B is a *p-group.*

Proof: (a) This is clear; see [5], Chapter A, section 15.

(b) Obviously the Fitting subgroup L/M of G/M is a non-trivial p'-group. Since $Z(L) \subseteq C_G(M) = M$ and L does not centralize M, it follows that $Z(L) = 1$.

(c) If A is not a p-group, we have $A_{p'} \neq 1$, and the minimal normal subgroup M of G lies in $A_{p'}^G$. Since $O_{p'}(G) = 1$, by Lemma 1 we have

$$
[M, B_{p'}] \subseteq [A_{p'}^G, B_{p'}^G] = 1.
$$

Hence

$$
B_{p'} \subseteq C_G(M) = M = O_p(G).
$$

Thus $B_{p'} = 1$, so that B is a p-group. This proves (c).

The following proposition gives some information on primitive finite groups which are factorized by two nilpotent subgroups (see also Gross [8] and Heineken $[9]$.

PROPOSITION: Let the primitive group $G = AB$ be the product of two nilpotent subgroups A and B and let $M \neq G$ be a uniquely determined minimal normal *subgroup of G.*

- (i) *M* is an elementary abelian p-group and $M = C_G(M) = \text{Fit } G = O_p(G)$,
- (ii) $M = (A \cap M)(B \cap M)$ and $A \cap B = 1$,

(iii) *A and B* are *maximal nilpotent subgroups of G,*

(iv) *A or B is a Sylow-p-subgroup of G, the other is a p'-group,*

(v) If $G = AC = BC$ for some subgroup C of G, then $G = C$.

Proof: (i) The group G is soluble by the theorem of Kegel and Wielandt, so that (i) follows from Lemma 2.

(ii) The Fitting subgroup of G is factorized, so that $M = (A \cap M)(B \cap M)$ and $A \cap B \subseteq M$; see [4], Lemma 2.5.7. In particular $A \cap B$ is a p-group. The Fitting subgroup L/F of G/F is a p'-group and $Z(L) = 1$ by Lemma 2. The subgroup $A \cap B$ is centralized by M and by a suitable p-complement $G_{p'}$ of G. Therefore $A \cap B$ is contained in $Z(L) = 1$. This proves (ii).

(iii) Assume that the nilpotent subgroup \vec{A} is properly contained in a nilpotent subgroup P of G. By the modular law $P = A(B \cap P)$. Clearly $G = PB$, so that by (ii) it follows that $P \cap B = 1$. Hence $A = P$. This proves (iii).

(iv) By Lemma 2 one of the two subgroups A or B is a p-group. If A is a p-group, it is even a Sylow-p-subgroup of G by (iii). Since $A \cap B = 1$, it follows that A is a p' -subgroup of G. This proves (iv).

(v) If $G = AC = BC$ and $(|A|, |B|) = 1$, the order of A and the order of B both divide the order of C. Hence by (iv) $|G| = |A||B| = |C|$ and so $G = C$. **|**

The preceding proposition is very useful for the study of finite products of nilpotent groups. As an application of this we give a short proof of the following criterion for a finite product of two nilpotent groups to belong to the saturated formation of metanilpotent groups, i.e. to have Fitting length at most two. Note, however, that a finite product of two nilpotent groups may have arbitrary large Fitting length, since for each positive integer k there exists a group of order $p^m q^n$ and Fitting length k where p and q are primes and m and n are natural numbers.

THEOREM (Maier [13]): *Let the finite group G = AB* be the *product of two nilpotent subgroups A and B. Then G is metanilpotent if at least one of the following two conditions is satisfied:*

- (i) The p-length $l_p(G) \leq 1$ for every prime p,
- (ii) *Any two subgroups of A commute and any two subgroups of B commute.*

Proof: Assume that the theorem is false, and let $G = AB$ be a counterexample of minimal order. Since A and B are nilpotent, G is soluble by the theorem of Kegel and Wielandt. Clearly G is not metanilpotent. Since the metanilpotent groups

form a saturated formation, G is a primitive group with uniquely determined minimal normal subgroup $M = C_G(M) = \text{Fit } G = O_p(G) \neq G$ which is an elementary abelian p-group for some prime p.

By the proposition the orders of A and B are relatively prime. If $l_p(G) \leq$ 1 it follows that G/M is a p'-group. Therefore $M = A$ and so $G = MB$ is metanilpotent. Therefore we may assume that (ii) holds.

Clearly $A \neq B$. By [11] there exists a proper normal subgroup N of G containing A or B; see [4], Theorem 7.1.6. If $A \subseteq N$, then $N = A(N \cap B) = AB$. By induction N is metanilpotent. It is easy to see that $M = \text{Fit } N$. Therefore N/M is nilpotent and hence a p'-group. Hence M is a Sylow-p-subgroup of N and $M = A_p B*_{p}$ is the product of the p-subgroup A_p of A and the p-subgroup $B*_p$ of $B*$.

By the proposition one of the two subgroups A or B is a p -group, the other a p'-group. In particular $A \cap B = 1$. Then $M = A_p = A$ or $M = B*_{p}$. In the first case G is metanilpotent, so that we may assume that $M = B_{\ast_p}$.

Then $M = B*_p = B*$ is a maximal normal subgroup of B. Since the Frattini subgroup of G is trivial, there exists a complement U of M in G. Then $Q = B \cap U$ is a complement of M in B . By [13], Lemma 3, B is abelian, contradicting $M = C_G(M)$. The theorem is proved. \blacksquare

3. Proof of Theorem A and Corollary 1

Proof of Theorem A: Assume that the theorem is false, and let G be a counterexample of minimal order. Then G is not an \mathfrak{X} -group, but every proper epimorphic image of G is an $\mathfrak X$ -group. This implies that G is primitive. If G is nilpotent, it is therefore cyclic of prime order p. If $A = B = G$, then G is an X-group by hypothesis. If A or B is trivial and the other is the whole group G, then $G = C$ is an X-group. Also in the remaining case when G is not nilpotent, $G = C$ is an \mathfrak{X} -group by the proposition. This proves Theorem A.

Proof of Corollary 1: The product F of all normal \mathfrak{X} -subgroups of the finite group G is a normal X-subgroup of G. The factorizer of F in G is

$$
X(F) = F(A \cap BF) = F(B \cap AF) = (A \cap BF)(B \cap AF).
$$

Hence $X = X(F)$ is an \mathfrak{X} -group by Theorem A. Since A and B are nilpotent, the subgroup X/F is subnormal in G/F , so that X is subnormal in G; see [4], Corollary 6.3.11. Therefore X is contained in F and $F = X(F)$ is factorized.

4. Proof of Theorem B and the example

Proof of Theorem B: Assume that theorem is false, and let $G = AB = AK =$ *BK* be a counterexample of minimal order. Then G is not an \mathfrak{X} -group, but every proper epimorphic image of G is an \mathfrak{X} -group. This implies that G is a primitive group. In particular Frat $G = 1$. Since $K \neq 1$ is nilpotent, it follows that G has exactly one minimal normal subgroup M , which is an elementary abelian p -group for some prime p . Thus

$$
M=C_G(M)=K.
$$

Evidently A and B are maximal subgroups of G . Moreover, since K is contained in every non-trivial normal subgroup of G , the images of A and B are \mathfrak{X} -maximal in every epimorphic image of G . Thus A and B are $\mathfrak X$ -projectors of G , so that in both cases they are conjugate. In the case of a saturated formation $\mathfrak X$ this follows from a result of Schmid [17]; in the case of a Schunck class $\mathfrak X$ of finite soluble groups it follows from [5], Theorem 3.21, p. 299. Finally this implies that $G = A = B$ is an X-group. This contradiction proves Theorem B.

Example: Let $V(3, 2)$ be a 3-dimensional vector space over $GF(2)$ and let G be a semidirect product of $V(3, 2)$ with GL(3, 2), the general linear group of 3×3 matrices over $GF(2)$, under the natural action of $GL(3, 2)$ on $V(3, 2)$. The group $GL(3, 2)$ is simple of order 168. Then $G = KA$ where the normal subgroup K of G is elementary abelian of order 8 and A is isomorphic with $GL(3, 2)$. Let $\mathfrak X$ be the smallest Schunck class containing the simple group GL(3, 2). It follows that

$$
\mathfrak{X} = \{X; X/\text{Frat}X \text{ is isomorphic to GL}(3,2) \text{ or } 1\},\
$$

see Erickson [6], p. 1921. Since A is isomorphic to $GL(3, 2)$ it is a (maximal) \mathfrak{X} subgroup of G and K is an abelian minimal normal subgroup of G . Furthermore, the first cohomology group $H^1(A, K)$ consists of exactly 2 elements, and hence there is a non-trivial 1-cocycle f as described in Holt and Plesken [10], p. 172, which maps A surjectively onto K. The set $B = \{af(a): a \in A\}$ is easily seen to be a complement of K in G. Thus B is a (maximal) $\mathfrak{X}\text{-subgroup}$ of G which is isomorphic to A. Finally we see that $G = AB$ by the surjectivity of f as follows.

First observe that ${af(u); a, u \in A}$ consists of precisely 168 \times 8 elements, since $K \cap A = 1$ and as the set $\{f(a): a \in A\}$ has exactly 8 elements. Now for each a in A, it follows that $f(a) = a^{-1}(af(a)) \in AB$. Therefore $G = AB = AK = BK$, since the order of G is 168 \times 8. Clearly A and B are \mathfrak{X} -groups, but G is not an \mathfrak{X} -group.

5. Proof of Theorem C

Assume that Theorem C is false and consider a counterexample $G = AB =$ $AK = BK$ where the nilpotent class c of K is minimal. Assume first that $c = 1$, so that K is abelian.

Since $G/K = AK/K \simeq A/(A \cap K)$ is an $\mathfrak{F}\text{-}\mathrm{group}$, the $\mathfrak{F}\text{-}\mathrm{residual}$ D of G is contained in K. Therefore also D is abelian. By condition $(*)$ D has a complement Y in G, so that $K = D \times (Y \cap K)$. The subgroup $T = Y \cap K$ is normal in $AY = G$. Since G/D is an $\mathfrak{F}\text{-group}$ and G is not an $\mathfrak{F}\text{-group}$, it follows that G/T is not an $\mathfrak{F}\text{-group}.$

Assume first that $K = D$. Since K is abelian, $A \cap K$ and $B \cap K$ are normal subgroups of $AK = BK = G$, so that also $C = (A \cap K)(B \cap K)$ is normal in G. The \Re -group G/C has the triple factorization

$$
G/C = (AC/C)(BC/C) = (AC/C)(K/C) = (BC/C)(K/C)
$$

with $\mathfrak{F}\text{-subgroups } AC/C \simeq A/(A \cap C)$ and $BC/C \simeq B/(B \cap C)$ and an abelian normal subgroup *K/C.* Then

$$
(AC/C) \cap (K/C) = 1 = (BC/C) \cap (K/C).
$$

By $(*)$ the complements AC/C and BC/C are conjugate, so that G/C is an $\mathfrak{F}\text{-group. Hence } D$ is contained in C. This implies that $K = (A \cap K)(B \cap K)$. Therefore $G/(A\cap K) \simeq B/(B\cap A\cap K)$ is an $\mathfrak{F}\text{-group.}$ Hence $K = D \subseteq A\cap K \subseteq A$, and so $G = A$ is an \mathfrak{F} -group. This contradiction shows that D must be properly contained in K.

Consider next the triply factorized \Re -group

$$
G/T = (AT/T)(BT/T) = (AT/T)(K/T) = (BT/T)(K/T).
$$

We claim that the $\mathfrak{F}\text{-}\mathrm{residual}$ *S/T* of *G/T* is equal to *K/T*. Since $(G/T)(K/T) \simeq$ G/K is an $\mathfrak{F}\text{-group}$, it follows that S/T is contained in K/T , so that S lies in K. On the other hand, $G/S \simeq (G/T)/(S/T)$ is an $\mathfrak{F}\text{-group}$. Hence D is contained in S. In fact, since T lies obviously in S, it is clear that $K = D \times T \subseteq S$. Therefore

 $K = S$, which proves the claim. Thus we obtain that G/T is an $\mathfrak{F}\text{-group}$, a contradiction. Therefore K is not abelian.

Suppose now that $c > 1$. By the minimality of c we have that $G/Z(K)$ is an $\mathfrak F$ -group. Hence the $\mathfrak F$ -residual D is contained in $Z(K)$, so that D is abelian. By (*) D has a complement Y in G. Since D lies in $Z(K)$, the subgroup $Y \cap K$ is normal in $DY = G$. Thus $K = D \times (Y \cap K)$, and this implies that $K/(Y \cap K)$ is abelian. It follows from the abelian case that $G/(Y \cap K)$ is an $\mathfrak{F}\text{-group}$. However, since G/D is an $\mathfrak{F}\text{-group}$, also $G \simeq G/(Y \cap K \cap D)$ is an $\mathfrak{F}\text{-group}$. This proves Theorem C.

References

- [1] B. Amberg, *Factorizations of groups*, Habilitationsschrift, Universität Mainz, Mai 1973.
- [2] B. Amberg, *Triply factorized groups* (Groups St. Andrews 1989), Vol. 1, London Math. Soc. Lecture Note Series 159, Cambridge Univ. Press, 1991, pp. 1-13.
- [3] B. Amberg, S. Franciosi and F. de Giovanni, *Groups with a supersoluble* triple *factorization,* J. Algebra 117 (1988), 136-148.
- [4] B. Amberg, S. Franciosi and F. de Giovanni, *Products of Groups,* Oxford University Press, 1992.
- [5] K. Doerk and T. Hawkes, *Finite Soluble Groups,* De Gruyter, Berlin, 1992.
- [6] R.P. Erickson, *Projectors of finite groups,* Comm. Algebra 10 (1982), 1919-1938.
- [7] A.D. Gardiner, B. Hartley and M. Tomkinson, *Saturated formations* and Sylow structure *of locally finite groups,* J. Algebra 17 (1971), 171-211.
- [8] F. Gross, Finite groups which are the *product of two nilpotent subgroups,* Bull. Austral. Math. Soc. 9 (1973), 267-274.
- [9] H. Heineken, *Products of finite nilpotent groups,* Math. Ann. 287 (1990), 643-652.
- [10] D. F. Holt and W. Plesken, Perfect *Groups,* Clarendon Press, Oxford, 1989.
- [11] O. H. Kegel, *Produkte nilpotenter Gruppen,* Arch. Math. 12 (1961), 90-93.
- [12] O.H. Kegel, Zur *Struktur* mehrfach *faktorisierter endlicher Gruppen,* Math. Z. 87 (1965), 42-48.
- [13] R. Maier, *Endliche metanilpotente* Gruppen, Arch. Math. 23 (1972), 139-144.
- [14] E. Pennington, *Trifactorisable* groups, Bull. Austral. Math. Soc. 8 (1973), 461-469.
- [15] E. Pennington, On *products* of finite *nilpotent groups,* Math. Z. 134 (1973), 81-83.
- [16] F. G. Peterson, *Properties of multifactorizable groups,* preprint, (1973), unpublished.
- [17] P. Schmid, *Lokale Formationen endlicher Gruppen,* Math. Z. 137 (1974), 31-48.
- [18] Y. Sysak, *Products of infinite groups,* Preprint 82.53, Akad. Nauk Ukrain. Inst. Mat., Kiev (1982).
- [19] H. Wielandt, Über Produkte von nilpotenten Gruppen, Illinois J. Math. 2 (1958), 611-618.