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ABSTRACT 

Let X be a Schunck class, and let the finite group G = A B  = B C = AC be 

the product  of two nilpotent subgroups A and B and an X-subgroup  C. If 

for every common prime divisor p of the orders of A and B the cyclic group 

of order p is an X-group, then G is an X-group. This generalizes earlier 

results of O. Kegel and F. Peterson. Some related results for groups of the 

form G = A B  = A K  = B K ,  where K is a nilpotent normal subgroup of 

G and A and B are /Y-groups for some saturated formation 2(, are also 

proved. 

1. I n t r o d u c t i o n  

A well-known theorem of Kegel [11] and Wielandt [19] states the solubility of 

every finite group G = A B  which is the product of two nilpotent subgroups A 

and B; see [4], Theorem 2.4.3. Amberg [1] and Pennington [15] have shown that 

the Fitting subgroup F of such a product is factorized, i.e. F = (A A F) (B fq F) 

and A fq/3 C_ F; see [4], Lemma 2.5.7. If there is a third subgroup C such that 

G = A B  = A C  = B C ,  Kegel [12] and Pennington [14] proved that G is nilpotent 

(supersoluble) whenever C is nilpotent (supersoluble). Moreover, Peterson [16] 

has shown that if ~ is a saturated formation containing all finite nilpotent groups~ 

then G is an ~:-group whenever C is an J-group; see [4], Theorem 2.5.10. 
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Our first theorem extends these results on trifactorized groups to Schunck 

classes. Recall that  a class X of finite groups is a S c h u n c k  class if it contains 

every group whenever its primitive factor groups are in X. Here a finite group is 

p r i m i t i v e  if it has a maximal subgroup with trivial core (see [5]). 

THEOREM A: Let X be a Schunck class of finite groups. Let the finite group 

G = A B  = A C  = B C  be the product of  two nilpotent subgroups A and B and 

an X-subgroup C. I f  for every common prime divisor p of  the orders of  A and B 

the cyclic group of order p is an X-group, then G is a (soluble) X-group. 

As an application of Theorem A we note the following generalization of the 

theorem of Amberg and Pennington mentioned above. 

COROLLARY 1: Let X be a Schunck class of  finite groups such that the product 

o f  two normal X-subgroups is an X-group. Let the finite group G = A B  be the 

product of  two nilpotent subgroups A and B.  I f  for every common prime divisor 

p of  the orders of  A and B the cyclic group of  order p is an X-group, then the 

maximal  normal X-subgroup of  G is factorized. 

Theorem A becomes false if only one of the two subgroups A and B is nilpotent 

(and the other is an X-group), as an example of Peterson shows; see [4], Remark 

2.5.12. On the other hand, if X is a saturated formation of finite groups, it was 

shown in [3] and [2] that a finite group G = A B  = A K  --- B K  is an X-group 

whenever A and B are X-groups and K is a nilpotent normal subgroup of G; see 

[4], Theorem 6.5.4. The example in section 4 below shows that we cannot expect 

such a result for arbitrary Schunck classes. Altogether we can say the following. 

THEOREM B: Let X be a saturated formation of  finite groups or a Schunck class 

of finite soluble groups. Suppose that the finite group G = A B  = A K  = B K  is 

the product of  two X-subgroups A and B and a nilpotent normal subgroup K of 

G. Then in both cases G is an X-group. 

Our last theorem extends part of Theorem B to general group classes. Let 

fit be a class of groups closed under the forming of epimorphie images. A fit- 

f o r m a t i o n  ~ is an epimorphism closed class of 91-groups which is residual with 

respect to fit, i.e. if G E fit and Ni is normal in G such that  G/Ni  E ~ for every 

i in the index set I,  then G / N  Ni E 5. 

THEOREM C: Let ~ be a fit-formation which is residual with respect to fit and 

satisfies the following condition: 
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( .)  I f  X is a Vt-group with abelian J-residual D, then D has a complement in 

X and all such complements are conjugate in X. 

Assume further that the 9Lgroup G = A B  = A K  = B K  is the product of two 

subgroups A and B an a nilpotent normal subgroup K of G. I f  A and B are 

J-groups, then also G is an J-group. 

It is well-known that  for a saturated formation of finite soluble groups, condi- 

tion (*) of Theorem C holds; see [5], Theorem 5.18, p. 383. This can be gener- 

alized to the class of H-groups introduced by Gardiner, Hartley and Tomkinson 

in [7] and defined by the following conditions: 

(i) Subgroups of g-groups are H-groups, 

(ii) Every H-group has a finite (subnormal) series with locally finite-nilpotent 

factors, 

(iii) If G is a H-group and 7r is a set of primes, then the maximal r-subgroups 

of G are conjugate. 

Clearly, every H-group is locally finite-soluble. It is shown in [7] that  in the class 

of H-groups saturated formations can be defined and condition (*) of Theorem 

C can be proved. Therefore the following generalization of a part of Theorem B 

can be deduced from Theorem C. 

COROLLARY 2: Let J be a saturated H-formation. Let the H-group G = A B  = 

A K  = B K  be the product of three subgroups A, B and K,  where K is nilpotent 

and normal in G. I f  A and B axe J-groups, then G is an J-group. 

Y. Sysak [18] has constructed locally finite-soluble groups of the form G = 

A B  = A K  = B K  where A and B are isomorphic q-subgroups for a Mersenne 

prime q and a normal p-subgroup K for the prime p. These groups G are not 

locally nilpotent, although the three subgroups A, B and K are locally nilpotent. 

This indicates limitations in generalizing Theorem C and Corollary 2. 

Notation: The notation is standard and can for instance be found in [4] and [5]. 

We note in particular that  a group G is an X-group if it belongs to the class of 

groups :~. 

2. Primitive products of finite nilpotent groups 

A finite group G satisfies D~ for the set of primes 7r if every 7r-subgroup of G 

is contained in some Hall 7r-subgroup and if any two Hall 7r-subgroups of G are 
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conjugate. It is well-known that every finite soluble group satisfies Dr  for every 

set of primes 7r. 

LEMMA 1 (Pennington [15]): Let the finite group G = A B  satisfying Dr be 

the product of two subgroups A and B. If  A and B are both ~r-closed, then 

ArB~ = B r A t  is a Hall ~r-subgroup of G and fAr, Br] C_ Or(G). In particular, 

i f  o r ( c )  = 1, then = 1. 

We note the following lemma on primitive factorized finite soluble groups. 

LEMMA 2: Let the primitive finite soluble group G = AB  be the product of 

two subgroups A and B, and let M be a uniquely determined minimal normal 

subgroup of G such that M = Co(M)  ~ G. Then the following holds: 

(a) M is an elementary abe/ian p-group for some prime p and M = Fit G = 

op(a), 
(b) The Fitting subgroup L / M  of G / M  is a non-trivial p-group and Z(L) = 1, 

(c) If  A and B are p-closed, then A or B is a p-group. 

Proof'. (a) This is clear; see [5], Chapter A, section 15. 

(b) Obviously the Fitting subgroup L / M  of G / M  is a non-trivial p'-group. 

Since Z(L) C_ Ca(M)  = M and L does not centralize M, it follows that Z(L) = 1. 

(c) If A is not a p-group, we have Ap, ~ 1, and the minimal normal subgroup 

M of G lies in Apa,. Since Op, (G) = 1, by Lemma 1 we have 

[M, Bp,] C [Aap,, BpC,] = 1. 

Hence 

Bp, c Co(M)  = M = Op(G). 

Thus Bp, = 1, so that B is a p-group. This proves (c). | 

The following proposition gives some information on primitive finite groups 

which are factorized by two nilpotent subgroups (see also Gross [8] and Heineken 

[91). 

PROPOSITION: Let the primitive group G = A B  be the product of two nilpotent 

subgroups A and B and let M ¢ G be a uniquely determined minimal normal 

subgroup of G. 

(i) M is an elementary abelian p-group and M = Co(M)  = F i t G  = Op(G), 

(ii) M = ( A n M ) ( B n M )  a n d A n B =  I, 
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(iii) A and B are maximal nilpotent subgroups of G, 

(iv) A or B is a Sylow-p-subgroup of G, the other is a p'-group, 

(v) I f  G -- AC = BC for some subgroup C of G, then G = C. 

Proof'. (i) The group G is soluble by the theorem of Kegel and Wielandt, so 

that (i) follows from Lemma 2. 

(ii) The Fitting subgroup of G is factorized, so that M = (An M)(B n M) and 

A N B _C M; see [4], Lemma 2.5.7. In particular A N B is a p-group. The Fitting 

subgroup L / F  of G/F is a p'-group and Z(L) = 1 by Lemma 2. The subgroup 

A N B is centralized by M and by a suitable p-complement G v, of G. Therefore 

A n B is contained in Z(L) -- 1. This proves (ii). 

(iii) Assume that  the nilpotent subgroup A is properly contained in a nilpotent 

subgroup P of G. By the modular law P = A(B n P). Clearly G = PB, so that 

by (ii) it follows that P N B = 1. Hence A = P. This proves (iii). 

(iv) By Lemma 2 one of the two subgroups A or B is a p-group. If A is a 

p-group, it is even a Sylow-p-subgroup of G by (iii). Since A N B = 1, it follows 

that  A is a p'-subgroup of G. This proves (iv). 

(v) If G = AC -- BC  and (IA[, [BI) - 1, the order of A and the order of B 

both divide the order of C. Hence by (iv) [G[ =[A[[B[ = [C[ and so G = C. 
| 

The preceding proposition is very useful for the study of finite products of 

nilpotent groups. As an application of this we give a short proof of the following 

criterion for a finite product of two nilpotent groups to belong to the saturated 

formation of metanilpotent groups, i.e. to have Fitting length at most two. Note, 

however, that  a finite product of two nilpotent groups may have arbitrary large 

Fitting length, since for each positive integer k there exists a group of order pmqn 

and Fitt ing length k where p and q are primes and m and n are natural numbers. 

THEOREM (Maier [13]): Let the finite group G = AB be the product of two 

nilpotent subgroups A and B. Then G is metanilpotent if at least one of the 

following two conditions is satisfied: 

(i) The p-length Ip(G) <_ 1 for every prime p, 

(ii) Any two subgroups of A commute and any two subgroups of B commute. 

Proof Assume that the theorem is false, and let G = AB be a counterexample of 

minimal order. Since A and B are nilpotent, G is soluble by the theorem of Kegel 

and Wielandt. Clearly G is not metanilpotent. Since the metanilpotent groups 
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form a saturated formation, G is a primitive group with uniquely determined 

minimal normal subgroup M = C o ( M )  = Fit G = Op(G) # G which is an 

elementary abelian p-group for some prime p. 

By the proposition the orders of A and B are relatively prime. If lp(G) <_ 

1 it follows that  G / M  is a p'-group. Therefore M = A and so G = M B  is 

metanilpotent. Therefore we may assume that (ii) holds. 

Clearly A # B. By [11] there exists a proper normal subgroup N of G con- 

taining A or B; see [4], Theorem 7.1.6. If A C_ N, then N = A ( N  f3 B)  = A B . .  

By induction N is metanilpotent. It is easy to see that M = Fit N. Therefore 

N / M  is nilpotent and hence a p'-group. Hence M is a Sylow-p-subgroup of N 

and M -- ApB*p is the product of the p-subgroup Ap of A and the p-subgroup 

B*p of B*. 

By the proposition one of the two subgroups A or B is a p-group, the other a 

p'-group. In particular A f3 B = 1. Then M = Ap = A or M = B*p. In the first 

case G is metanilpotent, so that we may assume that  M = B*p. 

Then M = B*p = B* is a maximal normal subgroup of B. Since the Frattini 

subgroup of G is trivial, there exists a complement U of M in G. Then Q = B N U  

is a complement of M in B. By [13], Lemma 3, B is abelian, contradicting 

M = Co (M ) .  The theorem is proved. | 

3. Proof of Theorem A and Corollary 1 

Proof of Theorem A: Assume that  the theorem is false, and let G be a counter- 

example of minimal order. Then G is not an :~-group, but every proper epimor- 

phic image of G is an :~-group. This implies that G is primitive. If G is nilpotent, 

it is therefore cyclic of prime order p. If A = B = G, then G is an X-group by 

hypothesis. If A or B is trivial and the other is the whole group G, then G = C 

is an X-group. Also in the remaining case when G is not nilpotent, G = C is an 

:E-group by the proposition. This proves Theorem A. 

Proof of Corollary 1: The product F of all normal 3~-subgroups of the finite 

group G is a normal :E-subgroup of G. The factorizer of F in G is 

X ( F )  = F ( A  f3 B F )  = F ( B  f3 AF)  = (A f3 B F ) ( B  f3 AF) .  

Hence X = X ( F )  is an 3~-group by Theorem A. Since A and B are nilpotent, 

the subgroup X / F  is subnormal in G / F ,  so that  X is subnormal in G; see [4], 

Corollary 6.3.11. Therefore X is contained in F and F = X ( F )  is factorized. 
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4. P r o o f  o f  T h e o r e m  B a n d  t h e  e x a m p l e  

15 

Proof  of  Theorem B: Assume that theorem is false, and let G = A B  = A K  = 

B K  be a counterexample of minimal order. Then G is not an X-group, but every 

proper epimorphic image of G is an :~-group. This implies that G is a primitive 

group. In particular Frat G = 1. Since K ¢ 1 is nilpotent, it follows that G 

has exactly one minimal normal subgroup M, which is an elementary abelian 

p-group for some prime p. Thus 

M = CG(M) = K. 

Evidently A and B are maximal subgroups of G. Moreover, since K is contained 

in every non-trivial normal subgroup of G, the images of A and B are 3&maximal 

in every epimorphic image of G. Thus A and B are 3C-projectors of G, so that  

in both cases they are conjugate. In the case of a saturated formation :~ this 

follows from a result of Schmid [17]; in the case of a Schunck class X of finite 

soluble groups it follows from [5], Theorem 3.21, p. 299. Finally this implies that 

G = A = B is an X-group. This contradiction proves Theorem B. 

Example: Let V(3, 2) be a 3-dimensional vector space over GF(2) and let G be 

a semidirect product of V(3, 2) with GL(3, 2), the general linear group of 3 × 3 

matrices over GF(2), under the natural action of GL(3, 2) on V(3, 2). The group 

GL(3, 2) is simple of order 168. Then G = K A  where the normal subgroup K of 

G is elementary abelian of order 8 and A is isomorphic with GL(3, 2). Let 3C be 

the smallest Schunck class containing the simple group GL(3, 2). It follows that  

X = {X; X / F r a t X  is isomorphic to GL(3, 2) or 1}, 

see Erickson [6], p. 1921. Since A is isomorphic to GL(3, 2) it is a (maximal) :E- 

subgroup of G and K is an abelian minimal normal subgroup of G. ~ r t h e r m o r e ,  

the first cohomology group H i ( A ,  K )  consists of exactly 2 elements, and hence 

there is a non-trivial 1-cocycle f as described in Holt and Plesken [10], p. 172, 

which maps A surjectively onto K.  The set B = {af(a):  a E A} is easily seen to 

be a complement of K in G. Thus B is a (maximal) :~-subgroup of G which is 

isomorphic to A. Finally we see that G = A B  by the surjectivity of f as follows. 

First observe that {af (u) ;  a, u E A} consists of precisely 168 x 8 elements, since 

K N A = 1 and as the set {f(a) :  a E A} has exactly 8 elements. Now for each a 
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in A, it follows that  $(a) = a- l (a f (a) )  e AB. Therefore G = AB = A K  = BK,  

since the order of G is 168 × 8. Clearly A and B are 2~-groups, but  G is not an 

:~-group. 

5. P r o o f  o f  T h e o r e m  C 

Assume that  Theorem C is false and consider a counterexample G = AB = 

A K  = B K  where the nilpotent class c of K is minimal. Assume first that  c = 1, 

so tha t  K is abelian. 

Since G / K  = A K / K  ~- A / (A  N K)  is an ~-group, the ~-residual D of G is 

contained in K.  Therefore also D is abelian. By condition ( . )  D has a comple- 

ment Y in G, so that  K = D × (Y n K).  The subgroup T = Y n K is normal in 

A Y  = G. Since G/D is an ~-group and G is not an ~-group, it follows that  G / T  

is not an ~-group. 

Assume first that  K = D. Since K is abelian, A n K and B n K are normal 

subgroups of A K  = B K  = G, so tha t  also C = ( A n  K)(B  n K)  is normal in G. 

The ~-group  G/C has the triple factorization 

G/C = (AC/C) (BC/C)  = (AC/C) (K /C)  = ( B C / C ) ( K / C )  

with ~-subgroups AC/C  ~ A / (A  n C) and B C / C  ~- B / ( B  n C) and an abelian 

normal subgroup K/C.  Then 

(AC/C) n (K/C)  = 1 = (BC/C)  n (K/C) .  

By ( .)  the complements AC/C and B C / C  are conjugate, so that  G/C is an 

~-group. Hence D is contained in C. This implies that  K = ( A n  K ) ( B  n K).  

Therefore G/ (AAK)  ,.. B / ( B N A A K )  is an ~-group. Hence g = D C_ A A K  c_ A, 

and so G = A is an ~-group. This contradiction shows tha t  D must be properly 

contained in K.  

Consider next the triply factorized ~-group  

G/T  = ( A T / T ) ( B T / T )  = ( A T / T ) ( K / T )  = ( B T / T ) ( K / T ) .  

We claim that  the ~-residual SIT  of G/T  is equal to KIT.  Since ( G / T ) ( K / T )  ~_ 

G / K  is an ~-group, it follows that  SIT  is contained in K / T ,  so that  S lies in K.  

On the other hand, G/S  ~- ( G / T ) / ( S / T )  is an ~-group. Hence D is contained in 

S. In fact, since T lies obviously in S, it is clear that  K = D x T C_ S. Therefore 
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K = S, which proves the claim. Thus we obtain that  G/T  is an J-group,  a 

contradiction. Therefore K is not abelian. 

Suppose now that  c > 1. By the minimality of c we have tha t  G/Z(K)  is an 

J-group. Hence the J-residual D is contained in Z(K) ,  so that  D is abelian. By 

(*) D has a complement Y in G. Since D lies in Z(K) ,  the subgroup Y n K is 

normal in D Y  = G. Thus K = D × (Y n K),  and this implies that  K / ( Y  n K) is 

abelian. It  follows from the abelian case that  G / ( Y  N K) is an ~-group. However, 

since G/D is an ~-group, also G ~_ G / ( Y  n K n D) is an ~-group. This proves 

Theorem C. 
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